پایداری نگاشت های خطی بین مدول های اساسی باناخ
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی
- author محمود ندایی لمر
- adviser عباس سهله اسماعیل انصاری
- Number of pages: First 15 pages
- publication year 1392
abstract
دراین پایان نامه پایداری نگاشتهای خطی بین مدولهای اساسی باناخ را روی یک جبر باناخ با همانی تقریبی کرانداروروی*cجبرها بررسی میکنیم
similar resources
نگاشت های خطی d-طولپا در مدول های باناخ d-نرم خطی
برا ی اولین بار اولام در سال 1940 این مسأله را مطرح کرد که اگر یک نامساوی تابعی را جایگزین معادله تابعی مفروض کنیم آنگاه تحت چه شرایطی جواب های این نامساوی نزدیک به جواب های معادله مفروض است؟هایرز اولین محققی بود که به مسأله اولام پاسخ داد و این مسأله به پایداری اولام – هایرز شهرت یافت. با توجه به این که اهمیت پایداری معادلات تابعی را در شاخه های مختلف ریاضی مشاهده می کنیم، لذا در این پایان نا...
15 صفحه اولفشردگی شکست ضربی برای نگاشت های خطی بین جبرهای باناخ
در این پایان نامه به بررسی فشردگی وفشردگی ضعیف نگاشت های چند خطی در فضای جبر باناخ می پردازیم که ضربی بسته نیستند. در همین راستا st? با ضابطه ?? t(a b)_ t(a)t(b) را با عنوان شکست ضربی مطرح می کنیم. با معرفی شماری از موارد مرتبط نظیر نگاشت های cf همریختی ( wcf همریختی) کران دار ، ارائه شده است . در پایان توجه خود را به نوع خاصی از جبر های باناخ نظیر جبر های باناخ نیم ساده و c* جبر های جابجایی م...
شناسائی سیستم های سوئیچ شونده خطی با استفاده از نگاشت معادلات خطی همزمان
این مقاله یک روش جدید برای حل مسئله شناسائی سیستمهای سوئیچ شونده خطی پیشنهاد می دهد. روش ارائهشده شامل دو مرحله نگاشت و خوشه بندی می باشد. در مرحله نخست، با حل دستگاه های معادلات خطی متعددی که هرکدام شامل تعداد معادلات و مجهولات یکسانی می باشند، یک نگاشت از فضای داده های ورودی-خروجی سیستم به فضای پارامترها صورت می گیرد. در مرحله بعدی با خوشهبندی و تفکیک پارامترهای بهدستآمده در مرحله قبل در...
full textنگاشت های خطی نگهدارنده طیف
در این مقاله نشان می دهیم که اگر a جبر باناخ یکدار و b یک $c^*$-جبر نامتناهی محض و دارای ایده آل ماکسیمال جابه جایی ناصفر و ρ:a→b نگاشت خطی پوشا یکدار و نگهدارنده طیف باشد آنگاه ρ همریختی جردن است
full textنگاشت های خطی حافظ طیف دوسویی روی جبرهای باناخ ماتریسی
در این پایان نامه ثابت شده که یک نگاشت خطی حافظ طیف دو سویی روی دو جبر باناخ ماتریسی، یک همریختی جردن است.
نگاشت های خطی حافظ طیف دوسویی روی جبرهای باناخ ماتریسی
ر این پایان نامه، پاسخی مثبت به حالت خاصی از مسئله آیوپتیت خواهیم داد که خود ریشه در مسئله کاپلانسکی دارد و به صورت زیر مطرح شده است: “آیا یک نگاشت خطی حافظ طیف دوسویی بین دو جبر باناخ نیم ساده یکدار لزوما یک همریختی جردن است؟” پاسخی مثبت به این سوال را، در قالبی به دست می آوریم که یکی از این دو جبرباناخ، دلخواه است و دیگری شامل مجموعه ای از ماتریس های 2×2 است
My Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023